Facies identification is usually treated as a segmentation problem, where some modification of U-net architecture is implemented. An input could be just raw seismic, raw seismic+attributes, or in other cases, raw seimsic+relative geological time (I recently reviewed a couple of papers, here is my post https://lnkd.in/dJ87DtA). The results are reasonably good and geologically consistent but require a lot of data and time to train the network.
It is a great step to excel at a single dataset; however, it is harder to claim the general applicability that we strive for; when trained once, it does not need to be retrained for a particular seismic at hand. It seems like a far-fetched goal in Oil and Gas due to data problems (5 V's of big data).
LinkedIn post